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Complete and flexible replacement of chaotic uncertainty with transmitted information
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Natural chaos can be described as an information source emitting symbolic sequences with positive entropy.
We use two algorithmic techniques from data compression in a nonstandard way along with a control scheme
to replace the natural uncertainty in chaotic systems with an arbitrary digital message. Unlike previous
targeting-based control, the controlled, deterministic, transmission appears statistically identical to natural
chaos, with a message modulated on it at the intrinsic Kolmogorov-Sinai information generation rate of the
chaotic oscillator. Thus, chaotic communication by targeting need not consume any additional channel capacity
beyond that required by the message itself and the message-bearing signal may appear identical to the uncon-

trolled oscillator. We also demonstrate control and data transmission at the channel capacity of the oscillator,
the maximum possible data rate compatible with the grammar.
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I. INTRODUCTION

Chaotic systems are natural information sources. The sen-
sitivity inherent in these processes creates macroscopic un-
certainty by amplifying microscopic fluctuations from the
surrounding environment. But unlike pure noise, chaos is
highly structured and often low dimensional and thus easily
modeled and controlled. Such systems may further be de-
signed to convey useful information and thus function as a
communication system, transmitting information on a cha-
otic carrier. One class of techniques applies infinitesimal per-
turbations to use the dynamics to target specific orbit se-
quences that encode a message [1-4]. As these orbits are
indistinguishable from solutions of the natural, deterministic
chaotic dynamical system, one can use the techniques of
symbolic dynamics that provide a natural bridge between dy-
namics and digital communication. Orbits correspond to se-
quences of symbols from a finite alphabet, s;,s,,.... Each
symbol encodes a state-space region intersected by the tra-
jectory as it passes through a Poincaré section. In the sym-
bolic domain, the distinction between the discrete stochastic
sources traditionally considered in information theory and
deterministic chaos is nearly erased. Deterministic equations
of motion translate to conditional probability laws, e.g.,
p(s;|si_1,5i22, ...), and the evolution of an orbit is considered
as a stochastic information source. The topology of the cha-
otic attractor in continuous space corresponds, in symbolic
language, to the list of specific allowed and disallowed sym-
bolic words, and the density of orbits corresponds to the
varying relative probabilities of sequences of symbols.

To communicate, the state of a transmitter must be recre-
ated at a receiver to ensure decoding. A theoretical
result [5] states that to synchronize to a chaotic transmitter
the minimum channel capacity necessary is equal to the
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Kolmogorov-Sinai (KS) entropy rate (assuming, of course,
that the entropy rate of the message R is less than this). That
number (e.g., in bits/s) quantifies the rate of spontaneous
information generation in natural chaos due to intrinsic in-
stability of orbits in an unperturbed attractor.

Our purpose in this work is to explicitly demonstrate the
algorithmic technology necessary to produce a channel code
for chaotic oscillators with empirically observed symbolic
dynamics. This channel code takes streams of white iid bits
(considered without a loss of generality to be compressed or
encyphered messages with statistics akin to white bits, but
not “random” to the intended recipient) to structured streams
of symbols (not necessarily in a binary alphabet), which in-
form the targeting apparatus of the transmitting oscillator
about the desired symbolic dynamics of the orbits that the
oscillator ought to execute. This code is reversible and the
original message may be retrieved. The code construction is
general purpose, not constrained to a specific type of oscil-
lator or parameters: this method can drive any chaotic dy-
namical system provided a control scheme that can execute
any dynamically allowable symbolic orbit on a finite alpha-
bet.

Our experimental transmitter is a chaotic electronic circuit
[2] whose orbits can be targeted [4] with very small pertur-
bations to follow any desired symbolic sequence allowed by
the intrinsic dynamics. We adapt two technologies originally
invented for lossless data compression, Markov-model
source estimation and arithmetic coding, but use them in a
nonstandard configuration to drive the oscillator to follow a
specially constructed symbol sequence.

One result is that we show how to transmit arbitrary
streams of human-supplied binary information so that the
encoded signal behaves identically to the natural chaotic os-
cillations, and the message is transmitted at the same rate as
information that would be generated by natural chaos. Here,
we have substituted all the natural chaotic uncertainty, quan-
tified by the KS rate, with a desired information stream with
the same Shannon rate and simultaneously maintain the sta-
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tistics of the natural symbolic dynamics, and thus construc-
tively show how to achieve the theoretical limit [5], using all
the information required to synchronize to transmit a useful
message as well. This is “chaotic stegeanography” (hiding
messages in what appears to be something else), as the trans-
mission appears statistically nearly identical to a free-
running chaotic oscillator, though we make no security
claims.

Our procedure furthermore allows channel codes with dif-
ferent transition probabilities than the unperturbed (natural)
chaos, as long as the symbolic grammar is maintained. In the
class of control by infinitesimal perturbations, the capacity of
the chaotic oscillator—the maximum possible data rate—is
the topological entropy rate, greater than or equal to the KS
entropy rate. We recall the explicit solution for the transition
probabilities for this and demonstrate transmission at the
channel capacity as well.

II. CONSTRAINED CODES

The first task is to design and implement a constrained
code for the symbolic dynamics of the chaotic system. In
other words, a procedure to transform a sequence of arbitrary
message bits—in this case assumed to be independent, equi-
probable, binary bits—into a sequence of symbols that
matches the symbolic dynamics of a certain dynamical sys-
tem.

Constrained codes have a significant history, in particular,
as channel codes for magnetic recording. The most famous
of these are the (d,k) codes, implemented in nearly every
commercial magnetic disk drive as a data modulation code
(see, e.g., Refs. [6,7] for the mathematical theory surround-
ing them). For physical engineering reasons, it is desirable to
ensure that on the magnetic medium there is at least some
number, d, of 0 symbols between every 1 symbol encoded,
but, at most, k consecutive zeroes (meaning no magnetic
domain boundary) between every occurrence of a 1. The
input message bits, which have no constraints, are trans-
formed into a longer sequence that obeys the given con-
straints. These codes, in symbolic language, correspond to
constraining the grammar of the sequences—which are al-
lowed or disallowed—but impose no other targets on the
relative probabilities of words in the encoded sequence.
Hence, the key criterion is that the topological entropy rate
of the shift corresponding to the constraint must be equal to
or exceed the entropy rate of the transmitted sequences of
alphabet A (assumed equiprobable), i.e., log A.

Some data compression algorithms—source codes instead
of channel codes—operate by estimating an explicit proba-
bilistic model of the structured input sequence, and, using an
“arithmetic coder,” then emit a sequence of compressed bits
that are nearly white and independent (i.e., maximal en-
tropy), assuming the model accurately models the source.
The decompresser uses an arithmetic decoder along with the
identical model to reverse the compression. Suppose in this
setup that the compressed bits (being nearly white) were re-
placed by a new bit stream that is also white and indepen-
dent. The decompresser would then create a structured se-
quence that is statistically equivalent to a sample generated
from the the model of the source.
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FIG. 1. Schematic diagram of the control scheme.

To communicate through the chaotic process, we reverse
the usual position of decoder and encoder, and use an arith-
metic decoder as a channel encoder. We estimate a probabi-
listicc model of the source’s symbolic dynamics,
P(S,41|5;,8,_1,...) from an observation of the natural, unper-
turbed, chaotic oscillator and applying a “context-tree”-based
modeling algorithm [8] adapted from source coding meth-
ods. The modeling technique is based on universal compres-
sion so that the model’s metric entropy rate is guaranteed to
approach the source’s, given enough training data. We as-
sume without loss of generality that the desired message has
already been adequately source coded (compressed) or enci-
phered by conventional means so that it is statistically like
random bits, but in truth, was still was formed deterministi-
cally. We set up the arithmetic decoder with preknowledge of
the model structure and feed this whitened message into it,
producing a stream of structured symbols. We control the
transmitter to follow this symbolic sequence. By construc-
tion, it reflects the natural chaotic structure; hence the tran-
sitions requested will be experimentally allowable and hence
fully controllable. The resulting pseudochaos can be trans-
mitted over some link, and when its symbolic sequence is
recreated (which may require only coarse measurement pre-
cision), the message can be retrieved by the reverse of the
transmitter, feeding the symbols into a conventional arith-
metic coder with the same model.

Figure 1 shows a diagram outlining the steps of the en-
coding process. First, the symbolic output from an uncon-
trolled oscillator is the source for learning a predictive prob-
ability model, in our case, a context tree. To transmit, this
model along with the statistically white message is fed into
an arithmetic decoder, producing a stream of symbols with
the same probability structure and grammar as the saved
model, which was estimated to be very similar to the original
source. This symbolic sequence drives the controller of the
analog state of the oscillator. Figure 2 shows a “symbolo-
gram” [8] of an uncontrolled and a controlled symbol se-
quence. Consider some point along the sequence. Take the
future binary symbols as digits of the binary fraction that
forms the y-axis value, and similarly, in reverse time, for the
x axis. The figure is a graphical illustration of the fact that
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FIG. 2. (Color online) Comparing symbolic sequences of uncon-
trolled and controlled configurations. The x axis is the arithmetic
equivalent of binary symbols going into the past, the y axis of
symbols going into the future. Hence, sequences of binary symbols
may be conveniently projected into the unit square, conveniently
summarizing the symbolic dynamics. The fact the points arising
from the controlled (red, color online) and uncontrolled (blue, color
online) time series have nearly the same density in symbolic space
reflects the success in designing a channel code that transforms
random-appearing white message bits to symbolic sequences that
closely match the unperturbed oscillator’s grammar and metric
properties.

statistically the two sequences are essentially indistinguish-
able: the location and approximate density of points in the
symbol plane, like the oscillators in the continuous time rep-
resentation, are the same. Of course, if the input bits had not
been statistically white, this would not be so.

To receive a message, the process is reversed. We have
not examined any particular noisy channel model, as this is
not a work on communication engineering yet. We assume
that the state can be reconstructed sufficiently to produce the
same symbolic sequence. Chaotic synchronization is a poten-
tial technique that may assist here but it is not essential. The
process is reversed, and along with the same saved model,
the original message is reconstructed.

The arithmetic coder and decoder software that we em-
ployed was based on work by Wheeler [10] that was a re-
implementation of the original work in Ref. [11]. In practice,
there needs to be a known initialization state for the arith-
metic coder and decoder so that all data are properly recon-
structed. For our particular example, we chose the string
“0101,” which was a terminal node in the context tree model
as the initial state. In a more realistic example, one might
choose to designate one moderately rare symbolic sequence
in the structured source as the “synchronization word” that
would signal the transmitter and receiver to initialize their
coders in a prescribed way. Given ergodicity, a receiver that
happens to listen in on a sequence of output from the trans-
mitter starting from an unknown state will eventually en-
counter a synchronization word and be able to decode the
message from that point forward.
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III. CONTROLLING THE OSCILLATOR

We show a proof-of-principle experimental demonstration
in an electronic circuit. The oscillator and its control system
have been described previously in [2,4]. Briefly, the transmit-
ter is a nonlinear oscillator with a fold providing chaos of the
Roessler type. The control perturbations are achieved with
“dynamic limiting,” a certain maximum in voltage is ex-
pected for each oscillation. The control is such that sufficient
current is applied to prevent the voltage from exceeding this
limit. Proper targeting involves judiciously choosing the de-
sired target voltage individually for each oscillation. When
the control system is calibrated, as described below, once the
oscillator is synchronized to the controller (which happens
very rapidly), the desired target will be very close to the
actual naturally achieved maximum, and the control force (as
measured by the control current applied) is very small, often
approaching the noise level of the oscillator and observa-
tional electronics. The key to this is that there is a buffer of B
(usually 12 to 16) symbols as a symbolic “look-ahead,” so
that the new symbolic control input at each step is fed in as
the least significant symbol, and the controller may be aware
of the whole length of symbols to make a control input. As
shown in [4], this allows the perturbations to be very small
because the system has, in the previous time steps, already
been controlled to follow an orbit corresponding to all but
one of the symbols.

Training the symbolic control scheme requires only ob-
serving a long trajectory of uncontrolled orbits. An appropri-
ate Poincaré section is defined (which does not occur neces-
sarily at the maximum value used for control), and on this
plane the return map is practically one dimensional so a gen-
erating partition can be defined by dividing at the obvious
location, where the derivative is zero. To train the control,
one correlates the observed maximum value on the subse-
quent oscillation with the future sequence of B symbols ob-
served to occur from this point, and finds the appropriate
ensemble average. This yields the target limiter value to ap-
ply in order to control the next B symbols to the given se-
quence. To control to a given long sequence, one feeds in the
new symbols successively into the least significant bit of a
shift register, reads out the B-bit symbolic word, and looks
up the target limiter value from the training data. In sum,
using the method in [4] without alteration, we control the
transmitter to any given symbolic stream as long as that
stream is compatible with the grammar of the underlying
system. The coding construction we describe here ensures
that this is always the case.

Figure 3 shows time-delay plots of uncontrolled and
message-transmitting oscillators. Statistical methods [9] do
not distinguish them in any way. We have demonstrated by
explicit experimental transformation how the dynamical “in-
formation” generated by natural chaotic instability is not in
any fundamental way different from the usual information
considered in Shannon’s theory and communication engi-
neering.

IV. TRANSMITTING ON CHAOTIC SADDLES

By altering transition probabilities, we may transmit on
various ‘“‘chaotic saddles” that are contained in the natural
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FIG. 3. (Color online) Time delay plot of voltage from transmit-
ting circuit. The dark lines (black) indicate a sample of an uncon-
trolled orbit, and the light lines (red) indicate a sample from an orbit
transmitting a message. They are statistically indistinguishable.

attractor. By this we mean transmitting with the same gram-
mar or a subset of the grammar (i.e., which symbol words are
allowed or not), but possibly with different probabilities than
the natural chaotic dynamics. These are all orbits of the dy-
namical system and hence their density an invariant set of
the evolution operator. These would be statistically distin-
guishable [9] from the natural attractor, of course, but this
might have some practical advantages. For example, one
may prefer certain statistical characteristics for the best com-
munication over some physical channel (see, for instance, [3]
and references therein). Or one may be interested in the
maximum bit rate that can be transmitted given the grammar.
No change to the controller is necessary since all sequences
that would be controlled to now would exist in the natural
system and control to a pseudonatural orbit. Furthermore, an
oscillator identical to the transmitter could possibly synchro-
nize to all of these signals, as they are all orbits of the same
dynamical system, though stable synchronization is not guar-
anteed [10,11].

Imagine the case where we learn a context tree model
from a long series of symbols taken from the natural uncon-
trolled dynamics. Using the methods of [8] one can always
deterministically convert the estimated context tree model
into such a finite-state first-order Markov chain. Each of the
N, states corresponds to some particular history of recent
symbols. There is a transition matrix P;;, giving transition
probabilities from state i to state j, with each transition emit-
ting one symbol. If the size of the alphabet (number of sym-
bols in the symbolic dynamics) is A, then there are, at most,
A nonzero entries per row, and the sum across rows is iden-
tically 1. The metric (Shannon) entropy rate of this Markov
chain (assuming one strongly connected component in the
graph as expected for ergodic dynamics) is

h= 2 - Pij log Pijlu“iv
ij

where w is the stationary density given by uP=u. This en-
tropy £ is the rate at which information can be transmitted in
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FIG. 4. Time-delay plot of transmitter voltage with a channel-
capacity-achieving control signal.

the standard case where P is the model used in the arithmetic
coder.

This is not necessarily the best possible rate, however.
The optimum solution is a Markov chain with the same
grammar (pattern of allowed and disallowed transitions) but
one whose Shannon entropy equals the channel capacity, the
maximum possible entropy rate consistent with the grammar.
To find the channel capacity, form the connectivity matrix
T;j=&(P;>0), which gives a 1 for all allowed and a 0 for all
disallowed transitions. Let N be the largest eigenvalue of T,
Tbh=N\b for some eigenvector b. The channel capacity C, also
known as the topological entropy, is the logarithm of the
largest eigenvalue N of T: C=hp=log \. The various chaotic
saddles corresponding to the same grammar as the attractor
have probabilistic transition operators P’ that may differ
from P, but they must have the same pattern of allowed and
disallowed transitions, i.e., T'=T. In other words, we may
modify any entry of P that is neither identically O nor 1 to
form P’. Shannon derived [12] the explicit solution for trans-
mitting at the maximum rate when the symbolic dynamics is
a finite-state first-order Markov chain, i.e., when the prob-
ability distribution of transitions to any subsequent state,
emitting a symbol in the process, depends only on the
present state. This transition matrix, using the eigenvector b
found before,

b
P =)\ 1;?T,,, (1)
does maximize the entropy rate while staying consistent with
the grammar. The entropy rate, channel capacity, and topo-
logical entropy are all equal with PMAX,

Figure 4 shows a time-delay plot using as the trans-
mitting model. P¥4X was derived from the Markov chain
estimated from the uncontrolled oscillation of the experimen-
tal circuit. Visually the controlled attractor is still somewhat
similar to the natural chaos, but the two can be distinguished
with statistical methods. The same type of trajectories will
occur in both, but their relative probabilities are altered in the
channel-capacity-achieving solution. In fact, to achieve
channel capacity, all allowed symbolic words of asymptoti-
cally long length ought to occur with equal probability.

PMAX
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Therefore, compared to natural chaos, the rate-maximizing
solution will have more occurrences of previously rare se-
quences.

V. CONCLUSION

In summary, we have described a general-purpose con-
structive algorithm and performed an experimental demon-
stration showing that arbitrary messages may be modulated
onto the symbolic dynamics of general chaotic systems
whose symbolic dynamics are known only via observation.
The context-tree estimator can make excellent finite-state
tree-machine approximation models given observed sym-
bolic dynamics, and the arithmetic coder can modulate arbi-
trary white bits onto this proxy dynamical system. The result
is chaotic modulation of information at virtually the identical
rate as the Kolmogorov-Sinai entropy rate of the underlying
chaotic system, resulting in a controlled chaotic oscillation.

In conventional communication with a sinusoidal carrier
(e.g., FM or AM radio), the carrier has a zero entropy rate
and does not effectively use up any channel bandwidth, leav-
ing it all to the desired message. Stojanovski et al. [5] inves-
tigated the theoretical requirements for chaotic communica-
tion, namely the channel capacity when there is a chaotic
carrier, and found that the carrier alone requires a channel
capacity equal to its KS entropy. This might suggest naively
that chaotic communication would have more overhead than
conventional communication by using up the channel band-
with that could otherwise be devoted to the message. Here
we have explicitly demonstrated that this need not be the
case, by devising a general-purpose approach to transmit a
message embedded entirely within the natural KS entropy
rate of the uncontrolled system, achieving the best theoretical
bound of [5]. When this happens, the controlled system must
necessarily appear statistically just like the uncontrolled sys-
tem, and our result is hence the ideal limit of modulation-
based (vs targeting-based) chaotic communication.

Thus we have shown, by explicit experimental demonstra-
tion, that the information commonly said to be “created” in a
free-running chaotic dynamical system is fungible, inter-
changeable with the ordinary information of communication
theory. All work using the targeting of symbolic dynamics,
starting from [1], suggest this, but we think ours is the most
compelling demonstration since the result can be made vir-
tually identical to the free-running case. This work signifi-
cantly broadens the generality of small-perturbation-based
approaches to the design and control of chaotic systems.
Starting from [1], various ad hoc modulation schemes used
control inputs to fully determine evolution in a desired way,
but the resulting dynamics under modulation were arbitrary
in their statistics. In a modern analysis of communication
schemes, the information-theoretical aspects of the channel
code are divorced from the particular physics and engineer-
ing of the modulation hardware; our methods here do the
same for targeting-based chaotic communication.

The central prerequisite for our method is to construct a
chaotic transmitter whose symbolic dynamics are practically
targetable. With our approach, this may be designed with
experimental engineering practicality being paramount, as
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the symbolic end of constructing the transmitted sequence is
solved with substantially general and nearly optimal algo-
rithms (with the possible exception of expending channel
capacity for error correction). In other words, the symbolic
dynamics of the transmitter does not need to be specially
tuned to the desired message statistics or engineered for par-
ticularly simple symbolic dynamics. Furthermore, one can
design a dynamically synchronizing receiver with respect to
the unperturbed natural oscillator: finding stable synchroni-
zation in its natural condition is easier than ensuring the
stability remains under modulation.

Alternatively, one might intentionally want to alter the
relative probabilities on the transition matrix used for trans-
mission, e.g., to achieve the channel capacity maximizing
solution, to tune the spectral characteristics or noise resis-
tance in continuous space, or to create a system that has a
robust synchronizing receiver. Our use of the automatic
context-tree modeling method provides a good and suffi-
ciently compact and yet accurate estimate of the unperturbed
dynamics and a finite subshift approximation to its grammar.
This is a surprisingly nontrivial problem in engineering prac-
tice, as there the dynamics of the oscillator will likely be
determined by physical implementation necessities, which
will not necessarily yield a particularly simple symbolic dy-
namics. The symbolic dynamics must be estimated entirely
empirically, and that calls for the kind of algorithms we em-
ploy.

Bollt and Dolnik [13] previously showed an example of
inserting binary streams of information into a subshift of the
finite type on binary symbols from a model of a chemical
reaction. Their estimated subshift had transitions with one or
two possible futures—when there was but one future, it was
transmitted to respect the grammar, and when there were
two, the bit from the message was inserted literally. This
procedure, more like data modulation codes, preserves the
topological structure (list of forbidden words) but not the
metric properties, unlike our present method. It is surprising
but true that applying a message bit that has equal probabil-
ity at every controllable binary transition does not necessar-
ily result in the maximum rate solution, i.e., that given by
(1), even though instantaneously, such a white bit has the
highest entropy pointwise. The complication is that such a
transition choice would generically result in executing orbit
segments with zero-data rate deterministic transitions more
frequently than the optimal solution would. This reduces the
overall data rate to be below the maximum achievable (the
channel capacity C) even though the per-symbol data
rate—at non-deterministic transitions—would be locally
maximized. A little introspection reveals the solution to be
unobvious and we commend the reader to review Shannon’s
derivation [12].

Our use of the arithmetic coding procedure permits one to
modulate a binary stream onto a symbolic dynamics that is
representable with a three-symbol alphabet with more than
one bit per symbol entropy, for instance. Baptista et al. [14]
investigated a somewhat complementary scenario, whereby a
chaotic system and control was synthesized to represent the
grammar of a message that was assumed to have a certain,
known, grammatical, and probabilistic structure. Our method
performs “impedance matching” between arbitrary white bits
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(which can come from a compressed structured source) and
arbitrary symbolic dynamics with a finite entropy rate. Our
use of the arithmetic decoder as a synthesis tool is most
similar to procedures used for efficient production of pseu-
dorandom numbers with a certain structure, given an under-
lying uniform source of random variates or random bits, e.g.,
[15,16]. Merhav and Weinberger [17] investigated the theo-
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retical bounds on algorithms for resimulating new data from
an information source given the original data, which absent
our insertion of nearly white true message bits instead of
truly random bits, is similar to the overall architecture of our
problem, as we estimate a structured source from the sym-
bolized observed chaotic data, and then resimulate a simi-
larly structured symbolic stream.
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